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INTRODUCTION 

In contrast to the large lowland rivers, mountain streams are generally part of a dense 
hydrographic network, with extremely variable, both in time and space, hydrological, 
morphological and sedimentological characteristics. On the other hand, even excluding the 
farthest and steepest branches of the network, mountain streams always have relatively large 
slopes: as a consequence, not only flood wave propagation is very fast, but the flow in a given 
reach is basically controlled only by the characteristics of the reach itself (no backwater effects). 
In mountain rivers, the combination of relatively small water depth with large grain-sizes of bed 
material, leads to large scale-roughness. Moreover, although the flow pattern at small space 
scale is highly non-uniform, i.e., the flow locally alternates into subcritical and supercritical 
states (transcritical flow), in a relatively long reach, let say of the order of magnitude of the 
bottom width , the average flow condition is quite well represented by a quasi uniform flow. 
This generally allows, from one side, to represent each reach by its averaged geometric 
characteristic and global roughness parameters, and on the other hand, to apply a simplified 
description of the fluid motion assuming uniform flow for each reach. Obviously, as mentioned 
before, this simplification  is valid only if the mean friction slope is not much different from the 
mean bottom slope, that is when backwater effects do not exists.      

In this work an attempt is made to testing some numerical models based on both complete 
and simplified one-dimensional unsteady open channel flow equations. The numerical models 
were applied to the exceptional event that took place in July of 1987 in the torrent Mallero 
(Valtellina- Northern Italy). A dynamic, diffusive and kinematic mathematical models based on 
Mac Cormack's scheme, as well as a kinematic wave model based on FTBS (predictor) - Four 
points (corrector) numerical scheme were used. 
 
MATHEMATICAL MODELS 
 
Full hydrodynamic model 

The unsteady flow equations in conservation law form for irregular cross sections are 
expressed as follow (Bellos 1995): 
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in which, A: cross section area, Q: flow discharge, u: mean flow velocity, ql: lateral inflow for 
unit length, Fh: hydrostatic pressure force in the cross section, Flx: longitudinal pressure force, 
ul: velocity component of the lateral inflow in the mean stream direction, g: gravity 
acceleration, : water density and S0, Sf : bed and friction slopes respectively. All units are in 
the SI system. 
 
Diffusive model 

In mountain rivers the gravitational forces are dominant respect to the inertial ones, thus 
equation (2) can be written in the following way: 
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substituting eqn. (1) in (3) and assuming that the inertial terms x/uut/u   are negligible, 
eqn. (2) takes the form: 
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Eqns. (1) and (4) constitutes the diffusive model. In this model eqn. (4) is time independent and 
can be written in the form: 
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where Sf is expressed by the Manning's equation: 
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Thus, discretizing the derivative )F(
x h 

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, we have a relationship between Q and the 

geometrical characteristics of the cross sectional area of the river. Finally, eqn. (1) assume the 
form: 
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If the cross sections are rectangular and prismatic without lateral inflow, eqn. (5) can be written 
as: 
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in which h is the water depth. This form is known in the literature as diffusive wave model. 
 
Kinematic model 

If the pressure differential term can be neglected, then, the derivative )F(
x h 



 is set equal 

to zero and as a consequence eqn. (5) assume the form: 
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Eqns. (9) and (1) constitutes the kinematic wave model. In the case of prismatic sections 
without lateral inflow eqn. (9) assume the well known form: 

 f0 SS   (10) 

Moreover, recalling the unsteady continuity equation, eqn. (1), and noting that the kinematic 
wave celerity, c, is equal (Cunge et al., 1980; Miller, 1984) to: 
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and that the time derivative of wetted area A can be written as: 
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using expression (11) and substituting (12) in (1) we obtain what is often called the kinematic 
wave equation: 
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The value of c depends upon the equation used to represent the resistance to flow, for example, 
using eqn. (6) we have: c=(5/3) u or using Chezy's formula we obtain: c=(3/2) u. 
 
NUMERICAL MODELS 
 
Full hydrodynamic model 

In this case the model is based on the well known Mac Cormack's numerical scheme. In 
order to smearing the discontinuities caused from the transcritical flow conditions and cross 
section irregularities, a diffusive term  was added. The numerical scheme used is an explicit, 
two steps, second order of accuracy, which reads: 

 Predictor: 
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 Corrector: 
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The initial conditions are represented by Q(x,0)=constant and A(x,0)=calculated with 
Manning's equation. At the upstream boundary the following conditions are especified 
Q(0,t)=hydrograph (data) and A(0,t)=calculated with Manning's equation. At the downstream 
boundary Q(L,t)=Q(L-x,t) and A(L,t)=A(L-x,t) for supercritical flow. 
 
Diffusive model 

In this case eqn. (7) must be solved. The numerical scheme, based on Mac Cormack's 
scheme is: 

 Predictor: 
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from eqns. (5) and (6): )A(QQ jj
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 Corrector: 
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Initial and boundary conditions are prescribed as previously mentioned for the full 
hydrodinamic model. 
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Kinematic model 
 
Mac Cormack's scheme 

In this case, as in the above mentioned case, the two steps technique assume the form: 

 Predictor: 
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 Corrector: 
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Initial conditions as previously mentioned for the above cases and boundary conditions only 
specified at the upstream boundary. 
 
FTBS-Four Points scheme 

In this case eqn. (13) was solved numerically using a finite difference approximation. A 
predictor-corrector method was used. The predictor step was performed with a FTBS (Forward 
Time Backward Space) scheme, while the corrector step was carried out with a Four-Points 
scheme (Priessmann). 

 Predictor:  

The time and space derivatives of the water discharge are approximated in the following way: 
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the celerity c is discretized as follows:  n
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j cc5.0c   and the lateral input discharge per unit 

length is: 
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introducing (22a), (22b) and (23) in (13) and expliciting the predicted discharge at grid point j 
one gets: 
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 Corrector: 

In the corrector step the time and space derivatives of the water discharge are approximated in 
the following manner: 
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celerity c, weighted in space and time, is expressed as follows:  
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substituting (25) and (26) in (13) and rearranging we obtain: 
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in which , , , , and  are coefficients given by: 
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from eqn. (28) we can obtain the discharge in grid point j at time level n+1 as: 
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The solution Q(x,t) of eqn. (13) in the space domain 0<x<L requires one initial value Q(x,0) at 
each computational point of the modelled domain and one boundary condition Q(0,t) . The 
kinematic wave equation cannot represent backwater effects. 
 
RESISTANCE TO FLOW 

As far as the resistance to flow is concerned, in all the models, Manning's coefficient related 
to grain roughness is calculated by means of the following expression: 

 26/dn 6/1
90  (30) 

where d90 expressed in m is the grain size of bed material for which 90% is finer. However, 
total flow resistance factors must include free surface instabilities, secondary flows, non-
uniform shear stress distribution, cross section irregularities, channel shape, obstructions, 
vegetation, channel meandering, suspended and bed load (Jarret, 1984). Due to large bed 
roughness and subsequently great energy dissipation, Mussetter (1989) observed the flow 
resistance at steeper slopes to be much greater than for flatter slopes. In fact, Jarret (1988) based 
on measurements performed on 21 mountain rivers in Colorado (USA) proposes the following 
expression for Manning coefficient: 

 16.03.0
o RS32.0n   (31) 

with 0.002 < So < 0.052 and 0.15 m < R < 2.2 m, where R is the hydraulic radius. Equation 
(31), when applied to some reaches of the Mallero torrent (see applications bellow), gives 
values of n approximately 3-4 times greater than those calculated with equation (30). It was also 
confirmed by the values of n necessary to simulate adequately flood wave propagation in the 
Frodolfo torrent (Valfurva-Italy). Then, in the applications, the values of n obtained by applying 
equation (30) were multiplied by a coefficient equal to 4. 
 
STABILITY CONDITIONS 

In all the models the choice of the time step size t is subject to Courant-Friedrichs-Lewy 
(CFL) stability constraint: 
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where 0 <  < 1 and cmax is the maximum value of celerity at a relevant time step. The constant 
 is generally set to values close to unity. 

In addition to CFL criterion, the time step size in the dynamic model must satisfy the 
following condition (Terzidis and Strelkoff, 1970; Becker and Yeh, 1972): 

 ung/Rt 234  (33)  

In the kinematic model based on FTBS (predictor)-Four Points (corrector) scheme  can 
arrive up to 10 without any noticeable instability, numerical diffusion or phase error. In the 
applications of diffusive and kinematic models based on Mac Cormack's scheme the value of  
was set equal to 0.8, while in the dynamic model it was equal to 0.1. 
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APPLICATIONS 

The above mentioned numerical models were applied to simulate the flood wave propagation 
in the Mallero torrent (Valtellina-Northern Italy) during the extreme flood event of July 1987. 
 
General description of the basin 

The Mallero torrent is a tributary of the Adda river which is the main stream of Valtellina, in 
the central Alpine region of Northern Italy. The Mallero torrent is 24 km long, starting at the 
elevation of 1636 m (m.s.l.) from the confluence of the Vazzeda and the Ventina torrents, and 
ending at the elevation of 282 m on its confluence with the Adda river. The basin of the torrent 
Mallero and the schematization of the models are shown in Figure 1. The surface of its basin is 
approximately 319 km2. The Valtellina region has always been, as has been known since the 
Middle Age as a place where severe storms accompanied by landslides and overaggradation 
have occurred. On July 1987 an exceptional event, with a discharge of around 200 years return 
period, has produced a huge inundation in Valtellina. 
 
Models implementation  

The necessary data for the implementation of the models are: longitudinal profile and cross 
sections of the main stream, granulometric composition of the bottom material, hydrographs 
corresponding to each tributary as well as hydrograph at the upstream boundary and stage-
discharge relations at the downstream boundary. 

The available morphological and sedimentological data obtained from 61 different cross 
sections (see Table 1) along the entire reach of 24 km were processed and bed slopes, d90 of bed 
material, and geometric characteristics of cross sections were determined and incorporated in 
the models. In order to generate the required data in each computational point of the modelled 
reach specially developed interpolation subroutines were used. 

Tributaries were not included in the model, except as a lateral input of water. The 
hydrographs at the downstream end of each tributary were computed by applying a rainfall-
runoff model (Di Silvio and Peviani, 1989). The hydrographs corresponding to each tributary 
are presented in Figures 2 and 3. 

In the models based on Mac Cormack's scheme the diffusive coefficient  was equal to 0.5, 
while in the model based on FTBS-Four Points scheme the values of  and  were equal to 0.6 
and 0.5 respectively.  

For all the simplified models the space step size was set equal to x=250 m, while in the 
dynamic model it was set equal to x=50m. 

In Figures 4, 5 and 6 the calculated hydrographs corresponding to distances +9 km, +18 km 
and +24 km respectively are presented. From these Figures it is observed that the flow 
hydrographs calculated with the kinematic and the diffusive models based on Mac Cormack's 
scheme are almost identical to those calculated with the kinematic model based on FTBS-Four 
Points scheme.  

In the dynamic model, as was expectable, a more attenuation of the peak discharge occurs. 
Parasitic oscillations, due to dispersive numerical errors, appears in the initial time steps of the 
calculation. 

 
 

CONCLUSIONS 

The aim of the present work was to test, in a real case, some numerical models based on both 
complete and simplified one-dimensional unsteady shallow water equations. The numerical 
models were applied to simulate the flood wave propagation in the torrent Mallero (Valtellina-
Northern Italy) during the exceptional event of July 1987. The following conclusions can be 
drawn: 
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- The kinematic models based on Mac Cormack and FTBS-Four Points schemes gives almost 

identical results. It means that the different numerical schemes do not influence the flood 
wave propagation characteristics. 

 
- The calculated hydrographs by means of both kinematic (Mac Cormack and FTBS-Four 

Points) and diffusive (Mac Cormack) models are almost identical. It means that in this case 
the differential pressure term does not affect so much the final results. 

 
- The dynamic model requires high computational time because of the small Courant number 

(=0.1) necessary to guarantee stability of the model. As was expectable, in the Dynamic 
model the attenuation of the peak discharge was greater than that obtained with the others 
models. However, the differences are not significant. 
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Figure 1.- Basin of the torrent Mallero and model schematization. 
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Figure 2.- Hydrographs corresponding to the tributaries of the torrent Mallero from torrents Chiareggio to 
Antognasco. 
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Figure 3.- Hydrographs corresponding to the tributaries of the torrent Mallero, from torrents Nevasco to 
Valdone. 
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Figure 4.- Calculated hydrographs at the progressive +9 km. 
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Figure 5.- Calculated hydrographs at the progressive +18 km. 
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Figure 6.- Calculated hydrographs at the progressive +24 km. 
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Table 1.- Morphological and sedimentological data. 

Pr (m) B (m)  So     Pr (m) B (m)  So    

0 12.0 0.1 0.37 0.21 0.26 0.16 14407 20.5 0.062 0.1 0.1 0.34 0.46

1000 15.0 0.05 0.1 0.15 0.3 0.45 14490 20.5 0.081 0.1 0.1 0.34 0.46

1220 15.0 0.05 0.1 0.15 0.3 0.45 14733 46.0 0.081 0.1 0.1 0.34 0.46

1900 15.0 0.045 0.1 0.15 0.3 0.45 15020 40.0 0.063 0.08 0.14 0.22 0.56

2200 10.0 0.045 0.1 0.15 0.3 0.45 15810 68.3 0.037 0.08 0.14 0.22 0.56

2800 15.0 0.04 0.1 0.15 0.3 0.45 16058 49.7 0.038 0.08 0.14 0.22 0.56

3100 20.0 0.037 0.1 0.15 0.3 0.45 16426 55.0 0.031 0.06 0.12 0.24 0.58

3400 40.0 0.037 0.1 0.15 0.3 0.45 16864 51.2 0.05 0.06 0.12 0.24 0.58

3900 20.0 0.035 0.1 0.15 0.3 0.45 17049 56.8 0.08 0.06 0.12 0.24 0.58

4490 30.0 0.035 0.1 0.15 0.3 0.45 17391 32.0 0.087 0.06 0.12 0.24 0.58

4702 41.3 0.032 0.1 0.15 0.3 0.45 17744 31.0 0.086 0.06 0.12 0.24 0.58

4822 65.0 0.032 0.1 0.15 0.3 0.45 17942 32.0 0.09 0.06 0.12 0.24 0.58

4970 98.0 0.032 0.1 0.15 0.3 0.45 18930 10.0 0.098 0.06 0.12 0.24 0.58

5068 98.0 0.032 0.1 0.15 0.3 0.45 19200 19.0 0.102 0.06 0.12 0.24 0.58

5422 98.0 0.016 0.1 0.15 0.3 0.45 19430 19.2 0.086 0.06 0.12 0.24 0.58

5536 35.0 0.016 0.1 0.15 0.3 0.45 19915 22.0 0.05 0.06 0.12 0.24 0.58

6050 12.0 0.095 0.1 0.15 0.3 0.45 20096 14.9 0.032 0.06 0.12 0.24 0.58

7940 12.0 0.095 0.1 0.15 0.3 0.45 20391 17.9 0.043 0.08 0.13 0.31 0.48

8355 15.0 0.12 0.1 0.15 0.3 0.45 21317 46.4 0.043 0.08 0.13 0.31 0.48

9365 15.0 0.12 0.1 0.15 0.3 0.45 21486 48.0 0.035 0.08 0.13 0.31 0.48

9935 25.0 0.066 0.1 0.15 0.3 0.45 21671 48.4 0.027 0.08 0.13 0.31 0.48

10400 50.0 0.036 0.1 0.1 0.34 0.46 21984 33.0 0.018 0.1 0.15 0.38 0.37

11000 51.0 0.048 0.1 0.1 0.34 0.46 22180 28.7 0.015 0.1 0.15 0.38 0.37

11250 30.0 0.048 0.1 0.1 0.34 0.46 22438 29.6 0.013 0.1 0.15 0.38 0.37

12139 37.0 0.056 0.1 0.1 0.34 0.46 22696 37.9 0.013 0.1 0.15 0.38 0.37

12318 48.0 0.064 0.1 0.1 0.34 0.46 22792 37.0 0.013 0.1 0.15 0.38 0.37

12484 38.0 0.066 0.1 0.1 0.34 0.46 23107 109.0 0.013 0.1 0.15 0.38 0.37

12689 61.8 0.057 0.1 0.1 0.34 0.46 23368 106.0 0.009 0.1 0.15 0.38 0.37

13088 45.6 0.043 0.1 0.1 0.34 0.46 23750 81.0 0.006 0.1 0.15 0.38 0.37

13516 50.5 0.035 0.1 0.1 0.34 0.46 24000 81.0 0.006 0.1 0.15 0.38 0.37

14115 69.8 0.036 0.1 0.1 0.34 0.46  
i (sediment composition i-th fraction), i=1,2,3,4; di=0.3 mm, 3 mm, 30 mm and 300 mm respectively. 


